Life Cycle Objectives
Operational Concepts – Top Level System Objectives and Scope

Our system is a source code/document control and change management tool for software development. Thus, the users of our system are solely software developers.
One of the benefits of our system is its scalability. The performance of the system greatly depends on the system’s hardware. Given our initial server requirements (as outlined under System and Software Architecture), the optimal workload level and data volume handled by our system is of small- or medium-sized software projects where a medium-sized project is defined to be about 20,000-250,000 lines of source code and a project team size of greater than ten people. In the evolution of the system, server requirements can be changed to meet greater workload level and data volume of larger projects.

Given our resources and time limitations, only essential features are included in the development of our system (as outlined under System Requirements). Any features in addition to the essentials can be considered in the future evolution of this system. Compared to existing source code/document control and change management tools already in the marketplace, we are not including the following features:
· E-mail notifications

· Reporting capabilities

· Spell checking
· Export/import capabilities

· Multiple server operating systems support
The following is a scenario of how a user will use our system:

The user logs into the system through a main login page. If the login is successful, the user retains credentials until logged off. The user enters a main portal page after login. The main portal page contains alerts, links to outstanding issues assigned to the user, links to projects that the user is working on, and access to predefined searches. Issues are displayed in more detail (i.e. issue status, source code version history) as form pages accessible through links. Depending on the user’s privileges, he or she can create and modify issues. Source code related to issues can be added, modified, and removed as well.
In addition to the user capabilities above, administrators control user access and privileges by adding, modifying, and removing personnel from the system.
Our system is designed with zero software maintenance required after the final release. System documentation serves as technical support for users.

System Requirements
First Priority Features
User Interface

· Users interact with the system through a secure web portal
· Users can access issues
Security and Access Control

· Administrators can add, modify, and remove personnel from the system

· Users can login and obtain credentials

· Users can access multiple projects
· Users are limited to the commands, views, and other privileges of a security group
Issue Creation and Modification Abilities
· Issues are numbered
· Issues can be assigned to users
· Issues can be linked together
· Users can create new issues, projects, and make changes

· Users can view issue details and history
Source Code File Deposit and Version Control
· Users can upload/download source code/document files
· Users can view version history/versions
Issue and Source Code Relationship
· Source code/document files can be attached to issues
Last Priority Features
User Interface

· Users can access alerts
Issue Search/Filter Abilities
· Users can access predefined searches/filters
Source Code File Deposit and Version Control

· Users can perform check-out/check-in functions
Advanced Features

· Users can customize field values and rename field labels
· Users can view statistics

System and Software Architecture

Our system is a web portal architecture using ASP.Net. This way, as long as users have internet connection and a web browser, they can access the system from anywhere at anytime. If upgrades are considered in the future, these upgrades will be easier as it isn’t a distributed application. Users login to the system through a web interface and can interact with the system through encrypted traffic. Data is stored in SQL Server 2000 databases.
Minimum Client Requirements

· Any operating system that supports a web browser

· Any web browser that supports HTML 3.0 or later

· Internet connection

Minimum Server Requirements

· Pentium 450 MHz

· 128 MB RAM

· 200 GB hard disk space

· Windows Server 2003 – Standard/Enterprise Edition with IIS

· Microsoft SQL Server 2000

Lifecycle Plan

Objectives
Effective and successful software development projects decrease significant risk by actively controlling changes to requirements and source code. Buying a tool that aids the assessment of change impacts before making changes, allows affected parties to review proposed changes, and notifies affected parties of changes once they have been approved is the most cost-effective solution if the company’s core competency is not source code/document control and change management. Our system will help increase communication, accountability, reliability of information, and productivity within a software development team, allowing them to focus on their products, services, and customers. Such a system enables any person who needs to examine the project plan, requirements, designs, coding standards, user interface prototype, or other work product to retrieve that work product from the system easily from anywhere at anytime.
Milestones and Schedules

Jan 9, 2005:

Team Membership

Jan 31, 2005:

LCA Complete – Presentation (timeframe = 1.5 weeks)

Feb 18, 2005:

Beta Release Features Complete (timeframe = 2 weeks)

Mar 4, 2005:

Final Release Features Complete (timeframe = 2 weeks)

Mar 10, 2005:

Demo

Responsibilities
Manager is responsible for the overall coordination of the developers and testers, and their work.
Developers and testers are responsible for work in the following areas:

· Initial Client/Server Requirements Setup

· Database Design
· User Interface
· Security and Access Control
· Issue Creation and Modification Abilities

· Source Code File Deposit and Version Control

· Issue and Source Code Relationship
· Issue Search/Filter Abilities
· Advanced Features
Approach

Work begins with the Initial Client/Server Requirements Setup and Database Design. Remaining work (in the areas listed above) is done in parallel. Developers will be testers for features they did not develop and testers will be developers for features they will not test. Resources (developers and testers) will be allocated so that heavy developing takes place at the beginning of beta/final and heavy testing takes place closer to beta/final release dates. The life cycle model will follow the Spiral Model.
Resources

· 1 manager

· 7 to 8 people serving as developers and testers

· Client/Server Requirements (as outlined under System and Software Architecture)
Feasibility Rationale
Change management is an important part of a software project’s success. More often than not, someone, somewhere has made an unapproved change, and created an increase in software complexity, destabilized the design and code, and increased cost and schedule associated with the change. People often have limited perspective on the potential impact of these changes. Having a source code/document control and change management tool increases communication so that changes are approved and known to happen before they are made. This in turn increases software quality and team productivity within a software development group. With such a tool, like our system, users can reduce project risks due to changes and increase their success rate. Compared to developing such a tool in-house, buying a system like ours can save on development costs and benefit from skills of people that specialize in change management.
In our LCO, we have successfully divided concepts into system requirements and identified the feasible architecture and technology required to realize this system. In addition, we have developed a Life Cycle Plan that defines the approach, divided responsibilities, and set milestones and schedules. From our LCO and analysis, this system is feasible and justified for development.
